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Abstract
Action prediction in videos refers to inferring the action category label by an early observation of a video. Existing studies
mainly focus on exploiting multiple visual cues to enhance the discriminative power of feature representation while neglecting
important structure information in videos including interactions and correlations between different object entities. In this paper,
we focus on reasoning about the spatial–temporal relations between persons and contextual objects to interpret the observed
video part for predicting action categories.With this inmind, we propose a novel spatial–temporal relation reasoning approach
that extracts the spatial relations between persons and objects in still frames and explores how these spatial relations change
over time. Specifically, for spatial relation reasoning, we propose an improved gated graph neural network to perform spatial
relation reasoning between the visual objects in video frames. For temporal relation reasoning, we propose a long short-term
graph network to model both the short-term and long-term varying dynamics of the spatial relations with multi-scale receptive
fields. By this means, our approach can accurately recognize the video content in terms of fine-grained object relations in
both spatial and temporal domains to make prediction decisions. Moreover, in order to learn the latent correlations between
spatial–temporal object relations and action categories in videos, a visual semantic relation loss is proposed to model the
triple constraints between objects in semantic domain via VTransE. Extensive experiments on five public video datasets
(i.e., 20BN-something-something, CAD120, UCF101, BIT-Interaction and HMDB51) demonstrate the effectiveness of the
proposed spatial–temporal relation reasoning on action prediction.
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1 Introduction

Action prediction in videos aims to predict action category
labels from partial videos that contain incomplete action exe-
cutions and has achieved remarkable progress in recent years.
But it still remains challenging since it is difficult to exploit
sufficiently discriminative information from the partial video
such as only the onset 10%of a complete video tomake accu-
rate prediction. Some existing methods (Kong et al. 2017;
Kong et al. 2020; Cai et al. 2019; Wang et al. 2019; Zhao
and Wildes 2019) explore enriched feature representations
from partial videos by transferring discriminative informa-
tion from full videos to partial videos. Several other methods
(Kong et al. 2018; Lan et al. 2014; Cao et al. 2013; Ryoo
2011) learn feature templates from training videos and use
the templates to perform matching for each segment of a
testing video. Although learning discriminative feature rep-
resentations has been widely studied by aggregating extra
information such as the progress level of action execution,
explicitly exploiting the interactions between objects from
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Fig. 1 Spatial and temporal
relation reasoning in videos.
The objects and their relative
positions indicate that the actor
is going to eat apple, drink water
or microwave food. With the
increasing input, when the actor
reaches out to the cup, we can
immediately make the
prediction that the actor is most
likely to drink water. The
prediction is made by spatial
and temporal relation reasoning

observed videos has received far less attention in action pre-
diction.

This paper focuses on reasoning about both the spatial
and temporal relations between persons and objects to pro-
vide an accurate visual content recognition of the observed
videos for action prediction. The spatial relations between
persons and objects offer a global interpretation of the scene
on a per-frame base and the temporal relations characterize
the underlying evolution of the spatial relations over time. For
example, as shown in Fig. 1, the objects of “apple”, “cup”
and “microwave oven” and their relative positions with the
actor suggest possible actions of “eating apple”, “drinking
water” and “microwaving food”, respectively. This demon-
strates that the spatial relations between persons and objects
can help provide important cues of the actions in videos
frames, thus contributing significantly to an early prediction.
It can be seen from Fig. 1, the prediction of “drinking water”
is accurately made only with the observation that the actor
reaches out to the cup, since the ambiguity is eliminated by
capturing the temporally varying relation between the actor
and the cup in sequential frames. Therefore, it is more impor-
tant and beneficial to infer the temporal relations in videos
for action prediction by modeling the dynamic interactions
between persons and objects over time.

With this in mind, we propose a novel spatial–temporal
relation reasoning method for action prediction in videos. In
this work, persons are considered as a type of object. For the
spatial domain, we propose an improved gated graph neu-
ral network (IGGNN), to perform spatial relation reasoning
of objects within video frames. Specifically, for each video
frame, objects are first detected using Faster R-CNN (Gir-
shick 2015) pre-trained on the ImageNet-1k dataset (Deng
et al. 2009) to describe the local details from the regions
of interest. A spatial graph is then built on the detected
objects,where the node denotes each object represented by its
detected bounding box and the directed edge denotes the rela-
tion between each pair of objects represented by the union

bounding box of the two objects. Accordingly, the spatial
relation reasoning is implemented by message propagation
on the spatial graph to learn spatial relation-aware object
representations.

For the temporal domain, we design a long short-term
graph network (LSTGN) to perform temporal relation rea-
soning between sequential frames. To model the temporal
dynamics of spatial relations, we build a temporal graph on
the video frames. The node denotes each frame, represented
by the corresponding spatial graph, which can be consid-
ered as a super node. The directed edge denotes the temporal
relation between each pair of two frames, represented by the
connectionof spatial graphs of the two frames.The connected
spatial graphs between two frames are temporally ordered
and temporally isometric. Consequently, the temporal rela-
tion reasoning is implemented by message propagation on
the temporal graph to learn temporal relation representation
between sequential frames.

In order to learn both the short-term and long-termdynam-
ics of the spatial relations in videos, message propagation
with multi-scale temporal receptive fields is explored in
LSTGN. In particular, the graph convolutional layers of
LSTGN propagate information along the edges of the tem-
poral graph, and the edges are updated by learning to
accumulate the node features at different scales of the tempo-
ral repceptive fields. Through the spatial–temporal relation
reasoning, for each temporal scale, a video feature represen-
tation is generated by concatenating node and edge features
learned from LSTGN. The final action prediction results are
produced by fusing the classification results of those video
features at multiple temporal scales.

IGGNN and LSTGN are jointly learned in an end-to-
end manner. During the training process, a visual semantic
relation loss is proposed to learn the latent correlations
between the spatial–temporal relations and action categories.
By using VTransE (Hanwang et al. 2017), the semantic rela-
tion between each pair of objects is modeled as a triplet in
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the semantic domain. The representations of two objects are
projected into a low-dimensional relation space where their
semantic relation is formulated by a vector transformation,
i.e., subject + relation ≈ object. Learning such a potential
relation in videos further promotes the process of relation
reasoning and boosts the prediction performance.

Our main contributions are summarized as follows. First,
we propose a novel spatial–temporal relation reasoning
method to capture both the spatial and temporal interactions
between visual objects for predicting actions from incom-
plete videos. It can accurately recognize the video content
by reasoning on the fine-grained object relations in the spa-
tial, temporal and semantic domains.

Second, we design a long short-term graph network to per-
form relation reasoning with multi-scale temporal receptive
fields. It can effectively capture the dynamics of the spatial
relations in varying temporal ranges and be readily integrated
into other networks of various tasks such as video captioning
and visual answering-questioning.

Finally, extensive experiments on five datasets demon-
strate the effectiveness of the proposed spatial–temporal
relation reasoning on action prediction.

2 RelatedWork

2.1 Action Prediction

Different from action recognition (Bhoi 2019; Wang et al.
2016; Ji et al. 2013) which can use complete spatio-temporal
information of the video to make classification, action pre-
diction aims to recognize actions before they are completely
executed. Ryoo (2011) firstly defines the problem of action
prediction and developed an extension of a bag-of-words
model to represent the temporal distribution of action fea-
tures. In Li and Fu (2014) and Cao et al. (2013), the
probabilistic suffix tree and posterior probability modeling
are respectively employed to learn the sequence patterns of
temporal segments for action prediction. Lan et al. (2014)
propose a hierarchical model to capture the structure of
actions at multiple granularities and deduce the action label.
Most of these methods assume that the length and the obser-
vation ratio of a test video are available, which does not
hold in the real-world application. To overcome this prob-
lem,Kong et al. (2014b), Kong and Fu (2016)model the label
consistency between video segments and the partial video,
and employ a monotonically increasing scoring function to
constrain the model.

Recently, deep learning based methods have been pro-
posed for action prediction. Some methods (Kong et al.
2018; Wang et al. 2019; Hu et al. 2018) focus on improv-
ing the performance of the predictor to tackle the problems
of sub-optimal solution and noise interference. Kong et al.

(2018) measure the predictability of different actions with
the help of bi-direction Long Short-Term Memory (LSTM),
and exploit a memory module to remember hard ones. Wang
et al. (2019) develop a teacher-student learning framework
to distill progressive action knowledge from an action recog-
nition model (teacher) to an early action prediction model
(student), across different tasks. Hu et al. (2018) develop a
soft label assignmentmechanism to estimate the progress lev-
els of subsequences as well as enhance the action predictor.
Other methods (Kong et al. 2017; Cai et al. 2019; Kong et al.
2020; Chen et al. 2018a) make efforts to learn discriminative
features for prediction. Kong et al. (2017) explore to trans-
fer the information from full videos to partial videos, and
incorporate the label consistency as additional constraints.
Similarly, Cai et al. (2019) propose a two-stage learning
framework to transfer the action knowledge from full videos
to partial videos. Kong et al. (2020) and Chen et al. (2018a)
employ the adversarial learning and the reinforcement learn-
ing, respectively, to generate more representative features for
predicting actions. Pang et al. (2019) and Zhao and Wildes
(2019) both aim to generate future information to relieve the
shortage of contextual information in partial videos. In addi-
tion to making accurate prediction, Aliakbarian et al. (2017)
add the time penalty on the loss function of LSTM in order
to make prediction as early as possible.

The aforementioned methods mainly devote to promoting
the expressive ability of features or improving the cognitive
ability of predictor, while neglecting the contextual relation-
ships between objects in videos for prediction. Our method
simultaneously performs spatial and temporal relation rea-
soning to comprehensively understand visual content to help
making prediction, imitating the predictive process of human
beings that employs reasoning to support decision mak-
ing (Evans et al. 1993).

2.2 Visual Relation Reasoning

Visual relation reasoning has achieved promising progress
in various computer vision tasks, such as visual question
answering (Aditya et al. 2018) and image captioning (Ander-
son et al. 2018). Most methods focus on relation reasoning
in static images (Newell and Deng 2017; Liang et al. 2018;
Zhang et al. 2019; Woo et al. 2018; Qi et al. 2019; Chen et al.
2018b). For example,Xu et al. (2019) develop a spatial-aware
graph relation network to discover the relationships for each
object in an image. Liao et al. (2019) propose to detect the
relations in images by predicting the semantic connection
between objects guided by natural language. Lu et al. (2016)
exploit the language priors from semantic word embedding
to finetune the likelihood of a predicted relationship.

Compared with static images, videos provide more infor-
mation for reasoning visual relations such as the dynamic
interactions between objects. Si et al. (2018) builds a spa-
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tial reasoning network to capture the high-level feature of
video frames and uses a temporal stacking strategy to recog-
nize action. Zhou et al. (2018) conducts temporal reasoning
in videos by a simple neural network. These methods only
pay attention to relation reasoning on either space domain or
time domain. Shang et al. (2017) is first to propose spatial–
temporal relation detection in videos. Later, Tsai et al. (2019)
improve upon (Shang et al. 2017) to build a spatio-temporal
energy graph using conditional random field for several
visual tasks in videos. Wang and Gupta (2018) modify the
graph convolutional network to model the spatial and tempo-
ral relations in videos for action recognition.Recently,Herzig
et al. (2019) use explicit appearance of object-object interac-
tion to learn an inter-object graph representation for action
recognition. Nicolicioiu et al. (2019) introduce a recurrent
space-time graph model by processing spatial and temporal
information differently. These methods make alignment for
each node at each time step, and use the spatial information
from neighbor nodes as well as the temporal information
from the last time step to update the current node. Sun et al.
(2019) propose the relational recurrent network for multi-
person activity forecasting. They model the spatial–temporal
relations in a fully connected graph by regarding persons in
each frames as nodes, and perform relational reasoning by
propagating information from nodes to its neighbors. In con-
trast, our method models the spatial relations in each video
frame as a super node and designs a temporal graph to per-
form temporal relation reasoning with multi-scale temporal
receptive field, which enables our model to capture both the
short-term and long-term dynamics of spatial relations.

2.3 Graph Neural Network

Scarselli et al. (2008) propose Graph Neural Networks
(GNNs) by unifying the recursive neural network and the
Markov chainmodel into a common framework. It first learns
node representations and then aggregates node representa-
tions to generate the final representation of the graph. Later,
several other extensions of GNNs (Scarselli et al. 2008)
have been proposed for various tasks. Gated Graph Neural
Networks (GG-NNs) and Gate Graph Sequence Neural Net-
works (GGS-NNs) are proposed in Li et al. (2016). Different
from GNNs, GG-NNs incorporate a node annotation as an
additional input to initialize each node, use Gated Recurrent
Units (GRU) (Cho et al. 2014) in the propagation model and
use backpropagation algorithm to remove the constraints on
parameters. GGS-NNs consist of several GG-NNs to pro-
duce the sequential output. Kipf andWelling (2017) propose
Graph Convolutional Networks (GCNs) to solve the node
classification problem in a semi-supervised manner. They
apply a localized first-order approximation of spectral graph
convolutions to layer-wise propagation rule and design a
neural network model to encode the graph structure. An

attention mechanism is used in Graph Attention Network
(GAT) (Veličković et al. 2018) to attach different impor-
tance to different nodes. Message Passing Neural Network
(MPNN) (Gilmer et al. 2017) contains a message passage
phase to update each node by aggregating information from
neighbors, and generates a node-based output by a read-out
function.

Ourworkmakes amodificationofGG-NNsby fusing edge
information into the input to perform spatial relation reason-
ing within video frames. We also propose LSTGN based on
GCNs to perform temporal relation reasoning between video
frames.

3 Our Method

3.1 Overview

Our core idea of addressing action prediction in a video is
to reason about the spatial and temporal relations between
different objects to comprehensively interpret the visual con-
tent of the observed video part for action classification.
Our method consists of two key components: an improved
gated graph neural network (IGGNN) for spatial relation
reasoning within video frames and a long short-term graph
network (LSTGN) for multi-scale temporal relation reason-
ing between sequential video frames.

For each video, we first detect objects in each frame
and extract visual features from the bounding boxes of the
detected objects. Then we perform spatial–temporal rela-
tion reasoning via IGGNN and LSTGN. After that, for each
temporal scale, a video representation is generated by con-
catenating the features of nodes and edges learned from
LSTGN and is fed into a classifier to generate the action
category probabilities. Finally, the action prediction result is
produced by fusing the category probabilities of all the tem-
poral scales. Figure 2 illustrates the overview of our method.

3.2 Spatial Relation Reasoning

3.2.1 Spatial Graph

We build a spatial graph to model the spatial relations
between objects within each video frame, denoted as Gs =
(V , E, A), where each node v ∈ V represents the detected
visual object and each edge e ∈ E indicates the spatial rela-
tion between two objects, represented by the union bounding
box of two objects proposals. The size of the spatial graph is
determined by the number of extracted objects (i.e., the num-
ber of nodes). In our experiments, different datasets have
different sizes of the spatial graph since different datasets
contain different numbers of objects. For the CAD120 and
BIT-Interaction datasets, the average number of nodes in
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Fig. 2 Overview of the proposed method. Visual objects in each video
frame are detected and input as the initial nodes and edges in spatial
graphs. The spatial relation reasoning is performed by message propa-
gation in the spatial graphs. The updated spatial graphs are treated as
the super nodes in the temporal graph. The temporal relation reason-
ing is performed with the multi-scale message propagation. The final
action category label is predicted by fusing decision scores of multiple

scales. The circles represent nodes (i.e., detected objects) in the spatial
graph, and the hollow circles represent virtual nodes (i.e., the objects
that are not detected in this video frame but appear in the current video
clip). The gray dashes represent the spatial relationship between virtual
nodes and other nodes, and the gray lines represent the spatial relation-
ship between nodes. Different arrows represent temporal relations at
different temporal scales. Best viewed in color (Color figure online)

the spatial graph is 3 and 2, respectively. For the 20BN-
something-something, UCF101 and HMDB51 datasets, the
average number of nodes in the spatial graph is 5. The
adjacency matrix A ∈ R

|V |×|E | determines how nodes com-
municate with each other, where |V | and |E | denote the
numbers of nodes and edges in the graph Gs , respectively.
The graph Gs is a directed fully connected graph, thus we
have |E | = |V |×|V |. To represent the existence of edge from
node vi to node v j , we set A(i, q) = 1, where i represents the
i th row of A corresponding to the node vi and q = i ×|V |+
j(i, j = 1, . . . , |V |) represents the qth column of A corre-
sponding to the edge eq . Features of each node and each edge
are utilized as their hidden states in message propagation for
spatial relation reasoning, which are denoted as hv ∈ R

dv×1

and he ∈ R
de×1, respectively, where dv and de represent the

dimensions of node feature and edge feature, respectively.
Since both the node feature and edge feature are extracted
from the detected object regions, thus we have dv = de.

3.2.2 Improved Gated Graph Neural Network

Inspired by the good performance of Graph Neural Net-
works on learning relations between entities, we propose an
improved gated graph neural network (IGGNN) to perform

spatial relation reasoning by message propagation in each
spatial graph. Different from GG-NNs (Li et al. 2016) that
takes only node features as input and propagates information
of each node to its neighbor nodes, our IGGNN takes both
the node and edge features as input, and propagates informa-
tion of each node to its connected edges rather than neighbor
nodes, which can learn more discriminative feature repre-
sentations of nodes for action prediction. At the nth timestep
of propagation, the interaction between the node vi and its
directly connected edges {e1, . . . , e|E |} is defined as

an�
vi

= An
vi

[
h(n−1)
e1 . . . h(n−1)

e|E |

]� + b, (1)

where h(n−1)
eq ∈ R

de×1 denotes the state of edge eq at the

(n− 1)th timestep of propagation. An
vi

∈ R
1×|E | denotes the

i th row of adjacency matrix at the nth timestep of propaga-
tion, which represents the co-occurance relationship between
the node vi and each edge. Note that An

vi
is changing with the

number of propagation time-steps n. b is a bias parameter.
Equation 1means that eachnodemakes interactionwith other
nodes through all edges in the spatial graph, which encour-
ages the model to reason the spatial relations in a broader
region. The recurrence of message propagation is performed
by a Gated Recurrent Unit (GRU) and formulated as
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znvi = σ
(
W zan�

vi
+ U zh(n−1)

vi

)
,

rnvi = σ
(
W r an�

vi
+ Urh(n−1)

vi

)
,

ĥ
n
vi

= tanh
(
Wan�

vi
+ U

(
rnvi � h(n−1)

vi

))
,

hnvi = (
1 − znvi

) � h(n−1)
vi

+ znvi � ĥ
n
vi

,

(2)

where hnvi ∈ R
dv×1 denotes the state of node vi at the nth

timestep of propagation. σ(x) = 1/
(
1 + e−x

)
is the logistic

sigmoid function and � is the element-wise multiplication
for matrix. znvi and rnvi represent the update gate and reset
gate, respectively, which help to preserve information char-
acteristic from previous propagation step. U z , Ur , W z , W r ,
U and W are parameters in GRU. The update of edge state
with the message propagation is defined as

hneq = W eh(n−1)
eq + d, (3)

where W e and d denote the weight parameters and bias
parameter, respectively.

After the spatial relation reasoning performed by IGGNN,
for the lth input video frame, the output graph-based rep-
resentation gl ∈ R

dv×1(l = 1, . . . , L) is the information
aggregation of all the nodes, given by

gl = tanh

⎛
⎝

|V |∑
i=1

αi tanh(hN
vi

)

⎞
⎠

⎛
⎝

|V |∑
i=1

αi = 1, αi ≥ 0

⎞
⎠ , (4)

where N is the last timestep of message propagation. αi

stands for the soft attention weight assigned to node vi , for-
mulated by

αi = softmax(tanh(WαhN
vi

+ bα)), (5)

where Wα and bα are the weight parameter and bias param-
eter, respectively. In this way, each object in the frame can
play a different role in predicting the action.

3.3 Temporal Relation Reasoning

3.3.1 Temporal Graph

Given an observed video with total L frames, we build a
temporal graph to model the temporal relations between
sequential video frames, denoted as Gt = (X , P), where
the node set X = {x1, . . . , xL } indicates the observed video
frames represented by their corresponding spatial graphs and
the edge set P indicates the temporal relations between pair-
wise frames. Each edge is formulated by (xl , rlu, xu), where
xl , xu ∈ X(l < u) and rlu is a set of different scales of
connections. Gt is a fully connected directed graph since we
assume that every two frames have relation in the temporal

domain and their temporal order should be maintained. Each
node in graph Gt can be considered as a super node since
each video frame is represented by a spatial graph.

3.3.2 Node Feature Representation

Let f l denote the feature representation of the lth super node
(i.e., the lth video frame) in the temporal graphGt . f l consists
of two parts: the spatial graph representation gl ∈ R

dv×1 and
the object feature Ol ∈ R

dv×K .
The spatial graph representation gl ∈ R

dv×1 is the
graph-based output of IGGNN, which captures the global
interpretation of the corresponding video frame. The object
feature Ol is obtained by encoding node states hN

v , which
represents the detailed local visual information within each
frame. Since different frames in the same video may have
different numbers of visual objects, a video-level temporal
alignment is designed to match the corresponding objects in
different frames so that we can extract object features of the
fixed size from video frames. Specifically, all the detected
visual objects in the input video are firstly clustered into K
clusters via K-means++ algorithm (Arthur and Vassilvitskii
2007). Each cluster has an anchor point, which is exactly the
clustering center. Let C ∈ R

dv×K represent all the anchor
points and the kth column ck ∈ R

dv×1 of C represent the
anchor point of the kth cluster. For each clustering center, we
find a corresponding node in each frame by soft-assignment.
For each video frame, the soft-assignment weight ωi of the
i th object (i ∈ {1, . . . , |V |}) to the kth clustering center
(k ∈ {1, . . . , K }) is defined as

ωi =
exp

(
−β

∥∥hN
vi

− ci
∥∥2
2

)

∑K
k=1 exp

(
−β

∥∥hN
vi

− ck
∥∥2
2

) , (6)

where β is a smoothing factor controlling the softness of the
assignment. hvi is the updated feature of the node vi from
the last propagation step in IGGNN and ci represents the
anchor point of the i th cluster. This soft-assignment mech-
anism enables the model to allocate a virtual node when
the detector is unable to detect the object corresponding to
the clustering center in some frames, so that the number of
objects in each frame is fixed. The object feature of the lth
frame is given by

Ol = [s1, . . . , sK ] , (7)

where sk represents the weighted sum of the residuals
between all the objects and the anchor point of the kth cluster
in a video, calculated by

sk =
|V |∑
i=1

ωk

(
hN

vi
− ck

)
. (8)
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(a)

(b)

Fig. 3 Illustration of the multi-scale strategy in temporal relation rea-
soning. For zth temporal scale, we sample z video frames with equal
interval, as shown in a. All the sampled frames and their temporal rela-
tions respectively construct the nodes and edges of the temporal graph,
as shown in b. The message propagation is conducted on the temporal

graph to update the node and edge features. During prediction, for each
scale, the corresponding node features are concatenated to represent the
video and generate action category probabilities. All the category prob-
abilities from all the scales are summed up to produce the final action
category label. Best viewed in color (Color figure online)
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This video -level temporal alignment enables us to build a
temporal graph for the holistic video by regarding each video
frame as a super node.

3.3.3 Long Short-Term Graph Network

We propose a long short-term graph network (LSTGN)
for performing temporal relation reasoning on the temporal
graph to explore how the spatial relations change over time.
Our LSTGN captures the dynamics of the spatial relations
in varying temporal ranges via a multi-scale strategy. The
multi-scale strategy refers to combining prediction results of
temporal relation reasoning with different scales of receptive
fields in the temporal domain, as shown in Fig. 3. The differ-
ent scales mean sampling different numbers of video frames
from a video as nodes of the temporal graph to propagate
information on the temporal graph. It enables the temporal
graph to update the information of each node and edge in both
the short-term and long-term duration. To be specific, at the
zth scale, we sample z nodes (e.g., video frames) with equal
interval from the given video sequences. Among the z sam-
pled nodes, the head node is represented by the spatial graph
of the first sampled frame and the tail node is represented
by the spatial graph of the last sampled frame. The edges
between the two nodes are represented by the spatial graphs
of the rest sampled frames. In order to take full advantage of
the latest information, we sample the input video frames by
including the last frame as much as possible. Taking the 4th
scale for example, given a video with 10 frames, we sample
four nodes that the 1st, the 4th, the 7th and the 10th frame.
There are two special cases: the message propagations at the
1-st scale and the 2-nd scale. For the 1-st scale, we only
sample the last frame and there is no edge. Thus, the model
is unable to capture the temporal relation between frames.
For the 2-nd scale, the two nodes are denoted by the spatial
graphs of the sampled two frames and the edge is represented
by the connection of the two spatial graphs. In this strategy,
the larger the scale is, the more detailed temporal dynam-
ics of the spatial relations can be captured. For the z-scale
message propagation, given node features f l , f u ∈ R

d f and
edge features vlu ∈ R

(z−2)×d f for all the nodes xl , xu ∈ X
and edges (xl , rlu, xu) ∈ P ,

we compute updated node features f ′
l and updated the

edge features v′
lu for all the nodes and edges using two func-

tions gnode(·) and gedge(·), respectively. gedge(·) takes head
node feature f l , tail node feature f u and edge feature vlu as
input, and outputs the updated edge feature v′

lu , given by

v′
lu = gedge( f l , vlu, f u). (9)

For each edge starting at node xl and terminating at node xu ,
we use gnode(·) to compute a set of updated vectors V s

l for
the head node xl and a set of updated vectors V e

u for the tail

node xu , formulated by

V s
l = {gnode( f l , vlu∗ , f u∗) : (xl , rlu∗ , xu∗) ∈ P},

V e
u = {gnode( f l∗ , vl∗u, f u) : (xl∗ , rl∗u, xu) ∈ P}, (10)

where u∗ represents the index of the tail node in edges
(xl , rlu∗ , xu∗) that take xl as the head node, f u∗ denotes the
feature of the tail node and vlu∗ is the feature of all the edges
between the head node and the tail node. Since the edges in
the above two equations are different, we use notation ∗ to
distinguish the different edges. The updated head node state
f ′
l and the updated tail node state f ′

u are then calculated by

f ′
l = h(V s

l ) =
∑
q

f q( f q ∈ V s
l ),

f ′
u = h(V e

u ) =
∑
q

f q( f q ∈ V e
u ),

(11)

where h(·) represents the sum operation to pool a set of vec-
tors into a single vector.

Action Prediction Through the multi-scale message pr-
opagation on the temporal graph, both the short-term and
long-term temporal relations are learned, which can be
extracted to represent the observed video. For each scale,
we concatenate the sampled node and edge features learned
by LSTGN to generate the video feature, which is fed into a
classifier (a fully connected layer) to produce action category
probabilities.

Let {�lz
j | j = 1, . . . ,C} be the action category proba-

bilities at the lth time step with scale of z, where C is the
number of action categories. We sum up the scores of all the
scales to produce the final action category probability scores
{�l

j | j = 1, . . . ,C} and use the softmax funtion to predict
the action label:

ŷl = softmax(�l
j ) = �

l
j∑C

k=1 �
l
k

(12)

3.4 Visual Semantic Relation Learning

To capture the latent correlations between the spatial–
temporal object relations and action categories, we introduce
a visual semantic relation loss into the joint learning proce-
dure of IGGNN and LSTGN. The semantic relation between
two objects is represented by a triplet in the semantic domain,
denoted as< subject−relation−object >. Generally, the
subject and object are visual objects in a video or image.
The relation usually refers to the relative position (“in front
of”, “on”, etc.), action (“picking up”, “eating”, etc.), other
verb or preposition and so on. By using the triple form, the
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semantic relation between two objects is regarded as a trans-
formation vector, whichmakes the subject state transformed
into the object state. For example, <man−pick up−cup>
represents that the state of “man” can be transformed into
the state of “cup” by the relation of “pick up”. On one hand,
the constraints of the triple form guide the model to learn
the semantic relation of <man−pick up−cup> rather than
<man−pick up−oven>. On the other hand, the semantic
relation of <man−pick up−cup> helps the model corre-
late “picking up the cup” with “taking medicine”, such
improving the prediction accuracy.We combine such seman-
tic relation and the spatial–temporal relation to equip our
spatial–temporal reasoning model with the association abil-
ity.Although the label of the semantic relation is not available
in this paper, the hidden semantic relation can also be learned
to promote the cognition and association ability of themodel.

To be specific, node states hN
v and edge states hN

e from the
last propagation step in spatial relation reasoning network
represent subject (or object) and relation, respectively.
Inspired by VTransE (Hanwang et al. 2017), we hold the
assumption that a valid visual semantic relation is formu-
lated as subject + relation ≈ object and apply L2 loss to
the learning process. The visual semantic loss between the
object i and the object j is defined as

L(i, j) =
∥∥∥W3 · hN

vi
−

(
W1 · hN

eq + W2 · hN
v j

)∥∥∥
2

2
, (13)

where W1,W2,W3 are the mapping matrices. For a spa-
tial graph, the visual semantic relation loss is refined by the
average loss of all the relations among different objects:

L s (W1,W2,W3) = 2

|V |(|V | + 1)

|V |∑
i=1

|V |∑
j=i+1

L(i, j). (14)

3.5 Loss

Given an input video of L frames with their corresponding
ground-truth labels {y1, y2, . . . , yL}, the loss for action cat-
egory classification is defined as

Lr(θ1, θ2) =
L∑

l=1

[−yl log ŷl − (1 − yl)(1 − ŷl)], (15)

where θ1 = {U z,Ur ,W z,W r ,U,W ,W e, b, d,Wα, bα}
denotes the parameters of IGGNN and θ2 denotes the param-
eters in gnode and grela of LSTGN.

Thus, the overall loss L consists of the classification loss
Lr based on the spatial–temporal relation reasoning and the
visual semantic relation loss Ls, formulated by

L = Lr(θ1, θ2) + λLs(θ3), (16)

where θ3 = {W1,W2,W3} represents the parameters in
visual semantic loss and λ is a trade-off parameter to control
the balance between the spatial–temporal relation and the
semantic relation for action prediction.

4 Experiments

4.1 Datasets

We evaluate our method on five datasets: CAD120 (Kop-
pula et al. 2013), 20BN-something-something (Goyal et al.
2017), UCF101 (Liu et al. 2009; Soomro et al. 2012), BIT-
Interaction (Kong et al. 2014a) and HMDB51 (Kuehne et al.
2011).

The CAD120 dataset (Koppula et al. 2013) totally con-
tains 120 vide-os of 10 different high-level action classes
performed by four different persons. The 10 action classes
are: “arrangingobjects”, “cleaningobjects”, “having ameal”,
“making cereal”, “microwaving food”, “picking objects”,
“stacking objects”, “taking food”, “taking medicine” and
“unstacking objects”. Each action video can be decomposed
into a sequence of sub-actions. Different action videos differ
in the ordering of sub-actions and the way of action execu-
tion. The prediction is performed on the high-level action.
Four-fold cross-validation is employed for evaluation and
the results are reported by averaging classification accura-
cies across the folds. For each fold, the actions of one person
are used for testing and that of the rest persons are for train-
ing.

The 20BN-something-something dataset (Goyal et al.
2017) is a large collection of 108,499 densely-labeled video
clips across 174 labels. These collected videos show basic
actions of human (e.g., picking up, pulling) with everyday
objects in real life, thus recognizing them requires a detailed
understanding of actions and scenes. We use the standard
and official subset that contains 21 action categories, includ-
ing “Opening something”, “Closing something”, “Turning
something upside down”, “Pretending to turn something
upside down” and so on. There are 11,101 short videos for
training and 1,568 videos for validation.We report the results
by averaging classification accuracies over all classes.

The UCF101 dataset (Liu et al. 2009; Soomro et al.
2012) is a popular action prediction dataset collected from
YouTube. It contains 13,320 videos covering 101 action cat-
egories. In order to provide the highest diversity, the actions
in this dataset contain five types, including human-object
interaction, human-human interaction, body-motion only,
playing musical instruments, and sports. There are three offi-
cial “train/val” splits for UCF101 and we follow the standard
practice on this dataset by reporting the average results over
the three splits.
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The BIT-Interaction dataset (Kong et al. 2014a) con-
stains 8 classes of human interactions, including “bow”,
“boxing”, “hug”, “handshake”, “high-five”, “kick”, “pat” and
“push”. There are 400 videos in the dataset with 50 videos per
class. According to previous work (Kong et al. 2017; Kong
et al. 2020; Zhao andWildes 2019), we use the first 34 videos
in each class for training and the rest for testing.

The HMDB51 dataset (Kuehne et al. 2011) has more
than 6,000 video clips that are mostly from movies, public
datasets, YouTube and Google videos. There are 51 cate-
gories such as “wave”, “brush hair” and “kick ball”, which
contain various types of actions. Three train/val splits are
provided for HMDB51. We report results by averaging over
the three official splits.

4.2 Implementation Details

4.2.1 Feature Representation

For the CAD120 dataset, the publicly available Histogram of
OrientedGradient (HOG) features fromKoppula et al. (2013)
are used to initialize the nodes and edges of the spatial graph,
respectively.

For the 20BN-something-something dataset, we train a
Faster R-CNN model using ResNet-50-FPN backbone (Gir-
shick et al. 2018). Since the ground-truth bounding box is
not available in this dataset, we manually label the positions
(bounding box) of objects in 10 frames sampled from each
video and nearly 2,000 videos (about 20% of the training
videos) are labeled. The objects are extracted by the trained
detectionmodel and the threshold of Intersection-over-Union
(IoU) for proposals in non-maximum suppression is set to
0.5. We extract the features of bounding boxes from the last
fully connected layer of the trained detection model. In the
spatial graph, the nodes are initialized by the extracted fea-
tures of the detected bounding boxes of individual objects,
and the edges are initialized by the extracted features of union
bounding boxes of the corresponding two objects.

For the UCF101 dataset, we employ a Faster R-CNN
model (Girshick 2015) pre-trained on the ImageNet-1k
dataset (Deng et al. 2009) to detect actors and objects in
video frames. Then we extract three types of features to
describe the actors, objects and their relations: two kinds
of Two-Stream CNN features (He et al. 2016; Wang et al.
2016) and 3D CNN feature (Hara et al. 2018). For the first
kind of Two-Stream CNN feature (He et al. 2016), we train
two ResNets on the UCF101 dataset for the RGB and opti-
cal flow streams, respectively, following the settings in Hu
et al. (2018). For the RGB stream we finetune ResNet-18
pre-trained on ImageNet and achieve 65% accuracy. For the
optical flow stream we train ResNet-18 from scratch and
achieve 50% accuracy. For the second kind of Two-Stream
CNN feature (Wang et al. 2016), following Zhao and Wildes

(2019), we use TSN (Wang et al. 2016) trained on Kinet-
ics (Kay et al. 2017) with BN-Inception (Ioffe and Szegedy
2015) as the backbone. The feature extraction models are
finetuned on the UCF101 dataset for the RGB and optical
flow streams. For the 3D CNN feature, following Pang et al.
(2019), we use the 3DResNext-101 (Hara et al. 2018) trained
on Kinetics (Kay et al. 2017) without finetuning. Finally, for
each kind of feature, we extract features from the last convo-
lutional layer of the feature model and make ROIPooling to
generate node features and edge features as input.

For the BIT-Interaction and HMDB51 datasets, We also
adopt the Faster R-CNN model (Girshick 2015) pre-trained
on the ImageNet-1k dataset (Deng et al. 2009) as an object
detector. For the BIT-Interaction dataset, following (Zhao
and Wildes 2019), we extract features using TSN (Wang
et al. 2016) trained on Kinetics (Kay et al. 2017) with BN-
Inception (Ioffe and Szegedy 2015) as the backbone and
finetune the model on the optical flow of BIT-Interaction
dataset. For the HMDB51 dataset, we use 3D ResNext-101
(Hara et al. 2018) trained on Kinetics (Kay et al. 2017) with-
out finetuning to extract features from the last convolutional
layer. We take the feature produced by ROIPooling as the
input of our model for the BIT-Interaction and HMDB51
datasets.

4.2.2 Parameter Setting

For IGGNN, the unit of GRU layer is empirically set to 512
and the number of propagation step is set to three. The feature
dimensions of both initial nodes and edges are reduced to 256
by a linear layer. To ease the training of the graph network, a
residual block is integrated before the last output layer which
takes the initial node features and edge features as input. For
LSTGN, the smoothing factor β in Eq. 6 is empirically set
to 10.

The functions gnode(·) and gedge(·) defined in Eq. 10
are both implemented by fully connected layers activated
by ReLU function. The input dimension differs at differ-
ent scales. Specifically, we use two fully connected layers
(512 → 256) for the CAD120 dataset and one fully con-
nected layer (256) for the other four datasets. For the
CAD120and20BN-something-somethingdatasets, the num-
ber of scales is set to four and five, respectively. For the
UCF101, BIT-Interaction and HMDB51 datasets, the num-
ber of scales is set to 8. The trade-off parameter λ is set to
0.125 for all the datasets. We use 10% of the training data as
a validation set to choose the optimal values of the number of
fully connected layers, the number of scale and the trade-off
parameter λ for each dataset.

All the networks are trained from scratchwith the learning
rate of 0.00005. The Adam optimizer (Kingma and Ba 2015)
and the SGD optimizer are employed with a batch size of 24
for optimization.
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Table 1 Accuracies (%) of different methods on the CAD120 dataset

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

mem-LSTM (Kong et al. 2018) 89.59 ± 0.41 88.35 ± 0.61 87.88 ± 0.11 87.43 ± 1.11 90.35 ± 0.21

MS-LSTM (Aliakbarian et al. 2017) 81.11 ± 2.76 78.38 ± 0.96 76.06 ± 1.06 75.27 ± 2.61 70.92 ± 0.76

MSRNN (Hu et al. 2018) 89.44 ± 0.89 89.92 ± 0.40 90.73 ± 1.20 89.84 ± 1.29 90.32 ± 0.00

TRN (Zhou et al. 2018) 87.10 ± 2.42 86.29 ± 2.42 88.31 ± 2.02 89.92 ± 0.40 86.69 ± 0.41

Ours 90.32±1.61 90.73±1.21 91.53±0.40 91.13±0.81 91.13±0.80

Best accuracy among the compared methods are indicated in bold

Table 2 Accuracies (%) of different methods on the 20BN-something-something dataset

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

mem-LSTM (Kong et al. 2018) 14.92 ± 0.44 18.08 ± 0.41 20.44 ± 0.73 23.22 ± 0.63 24.46 ± 0.93

MS-LSTM(Aliakbarian et al. 2017) 17.42 ± 0.54 16.8 ± 0.02 16.71 ± 0.21 16.83 ± 0.13 17.07 ± 0.00

MSRNN (Hu et al. 2018) 20.62 ± 0.47 21.02 ± 0.23 22.45 ± 0.45 24.05 ± 0.45 27.13 ± 0.54

TRN (Zhou et al. 2018) 18.83 ± 0.50 20.09 ± 0.52 23.16 ± 0.50 27.56 ± 0.69 28.83 ± 0.64

Ours 22.61±1.24 25.01±0.47 28.28±0.79 32.24±0.47 34.08±0.31

Best accuracy among the compared methods are indicated in bold

4.3 Comparison with State-of-the-Art Methods

To evaluate the effectiveness of our method for predicting
action, we compare our method with several state-of-the-art
methods and report the action prediction accuracies at the
observation ratios of {0.1, 0.3, 0.5, 0.7, 0.9}. The compared
methods are listed as follows:

– DBOW/IBOW (Ryoo2011) represents an action as a his-
togram of the spatio-temporal features to perform early
action recognition.

– MSSC (Cao et al. 2013) formulates the prediction prob-
lem into a probabilistic framework by applying sparse
coding to calculate the likelihood of each action tempo-
ral stage.

– MTSSVM (Kong et al. 2014b) enforces the label con-
sistency between video segments and partial videos to
maximize the discriminative power of the beginning tem-
poral segments.

– mem-LSTM (Kong et al. 2018) augments bi-direction
LSTMwith amemorymodule tomatch characteristics of
testing videos with training videos for action prediction.

– MS-LSTM (Aliakbarian et al. 2017) introduces a new
classification loss by incorporating a time penalty to
encourage the model make earlier prediction.

– MSRNN (Hu et al. 2018) assigns soft labels to subse-
quences that contain partial action executions and make
regression, jointly learned with an action predictor.

– DeepSCN (Kong et al. 2017) exploits sequential con-
text information extracted from full videos to enrich the
feature representations of partial videos.

– Global-Local (Lai et al. 2018) applies metric learning to
build a global-local temporal distance model with tem-
poral saliency of video segments.

– AAPNet (Kong et al. 2020) builds upon DeepSCN and
utilizes adversarial learning scheme to learn more dis-
criminative features for action prediction.

– DBDNet (Pang et al. 2019) generates future motions
and uses the synthesized future motions to reconstruct
observed historical actions in order to utilize more con-
texual information for early action prediction.

– RGN-KF (Zhao and Wildes 2019) propagates feature
residual across time to generate future features and takes
advantage of Kalman filters to make correction for action
prediction.

– T–S (Wang et al. 2019) proposes a teacher-student
framework to distill progressive knowledge from action
recognition model (teacher) to action prediction model
(student).

– Transfer (Cai et al. 2019) learns a set of feature projec-
tion layers and classifiers from full videos and then uses
them to improve the prediction of partial videos.

– TRN (Zhou et al. 2018) employs simple neural network
to model temporal relation at multiple time scales in
videos for making decision.
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For the CAD120 and 20BN-something-something data-
sets, all the methods use the same features for fair compari-
son. In the compared methods (Kong et al. 2018; Aliakbarian
et al. 2017; Hu et al. 2018; Zhou et al. 2018), the extracted
features of bounding boxes are concatenated to represent
each frame. All the models are retrained three times and we
report the average accuracy and standard deviation. Tables 1
and 2 reports the results on the CAD120 dataset and the
20BN-something-something dataset, respectively. It can be
observed that:

– Ourmethod achieves better performance thanothermeth-
ods on both datasets, which verifies the superiority of
reasoning both spatial and temporal relations between
objects on action prediction.

– At the observation ratios of 0.1 and 0.3, our method
achieves much higher accuracies than TRN that only
performs temporal reasoning, which validates the impor-
tance of capturing the spatial relations between objects
in frames.

– With the increasing input video frames, the results of
20BN-something-something dataset grow consistently
while the results of CAD120 dataset have slight changes.
The possible reason is that videos in 20BN-something-
something dataset show more fine-grained actions and
thus it requires gradually capturing discriminative tem-
poral information as the input increases. In contrast, the
early sub-actions of videos in CAD120 dataset are suf-
ficient to distinguish different actions at the early stage,
thus the results look more stable over time.

For the UCF101 dataset, we report the comparison results
in Table 3 where the accuracies of all the compared methods
are fromHu et al. (2018). All the methods use the ResNet-18
feature for fair comparison. From Table 3, we can observe
that:

– The performance of our method at the observation ratio
of 0.1 is vastly superior to the compared methods, which
validates the benefit of capturing the spatial relations to
an early prediction.

– Our method yields better results than most state-of-the-
art methods at other observation ratios. Note that Hu et al.
(2018) enhances the extracted CNN feature by employ-
ing an integralmap computing technique before inputting
them into the MSRNN model. Although no extra fea-
ture optimization technique is utilized in our method
for CNN feature extraction, our method still achieves
comparable overall performance at higher observation
ratios compared with Hu et al. (2018), which indicates
the effectiveness of the proposed spatial–temporal rea-
soning model.

For the UCF101 dataset, we also compare our method
with several recent methods, i.e., DBDNet (Pang et al. 2019),
RGN-KF (Zhao and Wildes 2019), T–S (Wang et al. 2019),
Transfer (Cai et al. 2019) and AAPNet (Kong et al. 2020),
shown in Table 4. All the results of these compared meth-
ods are reported directly from their original papers. For a
fair comparison, we use the same Two-Stream CNN feature
as RGN-KF (Zhao and Wildes 2019) and AAPNet (Kong
et al. 2020), and use the same 3D CNN feature as DBDNet
(Pang et al. 2019), T–S (Wang et al. 2019) and Transfer (Cai
et al. 2019) to evaluate our method. From the results, it is
interesting to observe that:

– Our method outperforms RGN-KF (Zhao and Wildes
2019) for most observation ratios using Two-Stream
CNN feature, which shows the effectiveness of our
method.

– Our method performs worse than DBDNet (Pang et al.
2019), T–S (Wang et al. 2019) and Transfer (Cai et al.
2019) using 3D CNN feature. The possible reason is
that 3D CNN feature is not suitable to represent visual
objects for spatial–temporal relation reasoning in our
method. In our method, the objects are extracted in each
video frame and then the spatial relation reasoning is
performed. After that, the temporal relation reasoning is
performed between video frames. Therefore, 2D CNN
feature is more suitable to represent the objects while 3D
CNN feature may introduce more noise from adjacent
frames. So Two-Stream CNN feature is more suitable to
our method, and when using Two-Stream CNN feature
our method generally achieves the best results for most
observation ratios.

For the BIT-Interaction dataset, we report our result by
using the feature extraction model provided by Zhao and
Wildes (2019) and directly copy the reported results of the
compared methods from their papers. Table 5 shows the
results of the BIT dataset. Our method outperforms RGN-
KF (Zhao and Wildes 2019) by 5% but performs worse at
the observation ratios of 0.3, 0.7 and 0.9, probably due to
that the main related objects in videos of BIT-Interaction are
two persons that have simple interactions, so the advantage
of relation reasoning in ourmethod is not obviouswhen com-
pared with using global spatiotemporal feature for prediction
in RGN-KF (Zhao and Wildes 2019).

For the HMDB51 dataset, we report our result by using
the same 3D CNN feature as Cai et al. (2019) and directly
copy the reported results of the compared methods from Cai
et al. (2019). Table 6 illustrates the results on the HMDB51
dataset and our method achieves better or comparable results
when compare with the state-of-the-art methods.
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Table 3 Accuracies (%) of
different methods using the
ResNet-18 feature on the
UCF101 dataset

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

DBOW (Ryoo 2011) 36.29 52.02 53.99 54.13 54.12

IBOW (Ryoo 2011) 36.29 70.23 72.56 73.84 74.72

MSSC (Cao et al. 2013) 34.05 58.32 62.52 63.55 62.67

MTSSVM (Kong et al. 2014b) 40.05 80.02 82.13 82.49 83.18

DeepSCN (Kong et al. 2017) 45.02 82.19 84.92 85.89 86.02

mem-LSTM (Kong et al. 2018) 51.02 86.75 88.37 89.22 89.97

MSRNN (Hu et al. 2018) 68.01 88.71 89.25 89.92 90.23

Ours 80.86 88.61 89.31 90.31 89.82

Best accuracy among the compared methods are indicated in bold

Table 4 Accuracies (%) of
different recent methods using
the Two-Stream CNN and 3D
CNN features on the UCF101
dataset

Method Feature Observation ratio

0.1 0.3 0.5 0.7 0.9

RGN-KF (Zhao and Wildes 2019) Two-stream CNN 83.30 87.78 91.50 92.03 92.85

AAPNet (Kong et al. 2020) 59.85 87.12 86.65 88.34 90.92

Ours 80.26 89.86 92.87 94.08 94.43

DBDNet (Pang et al. 2019) 3D CNN 82.67 88.35 90.58 91.69 92.02

T–S (Wang et al. 2019) 83.32 88.92 90.85 91.28 91.31

Transfer (Cai et al. 2019) 80.00 86.90 89.70 90.60 91.00

Ours 80.24 84.55 86.28 87.53 88.24

Best accuracy among the compared methods are indicated in bold

Table 5 Accuracies (%) of
different methods on the
BIT-Interaction dataset

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

RGN-KF (Zhao and Wildes 2019) 40.62 67.96 81.25 92.28 92.19

AAPNet (Kong et al. 2020) 39.84 64.84 80.47 88.28 91.40

DeepSCN (Kong et al. 2017) 37.5 59.38 78.13 86.72 90.63

MTSSVM (Kong et al. 2014b) 28.13 46.88 60.16 68.75 71.09

MSSC (Cao et al. 2013) 21.09 41.41 48.43 60.16 67.19

DBOW (Ryoo 2011) 23.44 41.41 47.66 54.69 55.47

IBOW (Ryoo 2011) 23.44 38.28 48.43 46.88 43.75

Ours 46.09 58.59 81.25 89.06 86.72

Best accuracy among the compared methods are indicated in bold

Table 6 Accuracies (%) of
different methods on the
HMDB51 dataset

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

Transfer (Cai et al. 2019) 43.50 51.20 56.40 59.60 61.10

Global-Local (Lai et al. 2018) 38.80 49.10 52.60 56.30 57.30

MTSSVM (Kong et al. 2014b) 13.60 26.70 33.80 37.50 37.50

MSSC (Cao et al. 2013) 12.40 24.90 33.80 37.80 38.80

Ours 45.10 52.35 56.73 59.41 61.11

Best accuracy among the compared methods are indicated in bold
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Table 7 Accuracies (%) of ablation studies at different observation ratios on the CAD120 and 20BN-something-something datasets

Method CAD120 20BN-something-something

Observation ratio Observation ratio

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

w/o spatial and temporal 81.45 80.65 80.65 79.03 79.84 16.45 19.32 22.90 24.74 22.00

w/o temporal 82.26 86.29 86.29 86.29 85.48 19.01 21.81 24.17 25.13 23.34

w/o spatial 86.29 83.87 82.26 83.06 83.06 20.47 21.24 23.98 28.06 28.51

w/o semantic-loss 87.90 88.71 87.10 87.10 85.48 20.98 21.11 25.06 28.32 30.17

Vanilla GGNN 83.07 84.68 83.06 81.45 82.26 20.79 23.41 26.59 30.82 32.97

Ours 90.32 90.73 91.53 91.13 91.13 22.61 25.02 28.28 32.24 34.08

Best accuracy among the compared methods are indicated in bold

Table 8 Accuracies (%) of ablation studies at different observation
ratios on the UCF101 datasets

Method Observation ratio

0.1 0.3 0.5 0.7 0.9

w/o spatial and temporal 75.98 77.09 77.37 77.10 76.09

w/o temporal 77.96 78.15 78.41 78.50 77.23

w/o spatial 76.29 86.02 87.8 88.98 85.06

w/o semantic-loss 77.10 83.60 85.32 86.47 84.05

Vanilla GGNN 78.31 87.19 88.15 86.47 84.05

Ours 80.86 88.61 89.31 90.31 89.82

Best accuracy among the compared methods are indicated in bold

4.4 Ablation Study

To analyze the proposed approach in depth, ablation stud-
ies are conducted for empirically evaluating the importance
of each individual component, including the spatial rela-
tion reasoning via IGGNN, the temporal relation reasoning
via LSTGN and the visual semantic relation learning via
VTransE based loss. Furthermore, we analyze the temporal
relation reasoning by using different numbers of fully con-
nected layers of gnode(·) and gedge(·) in LSTGN.We conduct
experiments on different temporal scales to go deep into the
studying of multi-scale strategy in temporal relation reason-
ing. Finally, we analyze the effectiveness of the soft attention
operator in spatial relation reasoning.

4.4.1 Evaluation on Importance of Each Component

Table 7 demonstrates the prediction accuracies of differ-
ent individual components on the CAD120 dataset and the
20BN-something-something dataset. Table 8 illustrates the
ablation study results of different individual components on
the UCF101 dataset. “w/o spatial and temporal” represents
the model without spatial and temporal reasoning, which
concatenates the features of the detected bounding boxes of
individual objects and the features of the union bounding

boxes of the corresponding two objects as input, and directly
uses cross-entropy loss as the objective function. “w/o tem-
poral” means only performing spatial relation reasoning in
video frames via IGGNN without capturing the temporal
relation between objects. It takes the same input as “Ours”,
pools the spatial graph representations from IGGNN to rep-
resent the video-level features and uses the loss in Eq. 16 as
the objective function. “w/o spatial” means only performing
temporal relation reasoning via LSTGN without modeling
the spatial relation between objects in each frame. It takes
the same input as “Ours” and concatenates the features of
the bounding boxes and the features of the union bounding
boxes to represent the frame-level representations. The visual
semantic loss is directly computed by the features of the
bounding boxes of individual objects. The final loss in “w/o
spatial” is also the same as “Ours”. “w/o semantic” represents
only using classification loss by removing the visual seman-
tic relation loss during the training of the model. “vanilla
GGNN” represents using GGNN to perform spatial relation
reasoning and using LSTGN to perform temporal relation
reasoning. It takes the same input as “Ours” and only feeds
node features into GGNN. Also, it uses the loss in Eq. 16 as
the objective function. From Tables 7 and 8, we can have the
following observations:

– When removing the spatial relation reasoning or the
temporal relation reasoning, the prediction results will
substantially degrade at all the observation ratios, which
validates that both these two relation reasoning are criti-
cal to the prediction performance.

– The spatial and temporal relation reasoning play differ-
ent roles on different datasets. For the CAD120 dataset,
the spatial relation reasoning generally contributes more
than the temporal relation reasoning except at the obser-
vation ratio of 0.1, probably due to that different actions
in the CAD120 dataset have similar motion patterns and
are easy to be confused without the help of contextual
information. Thus, it requires amore accurate recognition
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(a) (b) (c)

Fig. 4 Evaluation of different numbers of fully connected layers in LSTGN on the CAD120, 20BN-something-something and UCF101 datasets

Table 9 Accuracies (%) of
different scales on the CAD120
and 20BN-something-something
datasets

Scale CAD120 20BN-something-something

Observation ratio Observation ratio

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

1 82.26 85.48 86.29 83.87 81.45 20.77 21.15 23.47 25.42 26.15

2 89.52 89.52 90.32 88.71 87.10 20.43 21.81 24.17 25.72 26.42

3 90.32 90.32 90.32 85.49 87.10 22.28 23.26 25.70 28.85 29.11

4 90.32 90.73 91.53 91.13 91.13 23.31 24.37 27.49 30.74 31.32

5 87.91 87.91 88.71 89.52 87.90 22.61 25.02 28.28 32.24 34.08

6 86.29 88.71 88.71 88.71 89.52 22.00 22.96 26.24 30.34 31.56

Best accuracy among the compared methods are indicated in bold

of the scene via spatial relation reasoning to effectively
predict the action. At the observation ratio of 0.1, the
limited input leads to a light structure of LSTGN and
accordingly promotes the learning of LSTGN, so “w/o
spatial” achieves better performance.

– For the 20BN-something-something dataset, the spatial
relation offers certain assistance at the early observa-
tionwhile the contribution of temporal relations becomes
more significant at the later observation. The possible
reason is that videos in the 20BN-something-something
dataset show more fine-grained actions in simple back-
ground. Those videos lack auxiliary scene information to
assist the prediction, so the temporal information is more
crucial. Thus, it requires to gradually capture the tempo-
ral information with the increasing input so as to improve
the prediction performance. For different scenarios, our
method can effectively integrate the spatial and temporal
relation reasoning with adaptive capacity to consistently
improve the prediction results.

– Our method generally outperforms the “w/o semantic”,
which verifies that learning the visual semantic relation
encourages the model to capture the association between
the spatial–temporal object relations and action cate-
gories, thus promoting the performance.

– Ourmethodoutperforms “vanillaGGNN”,whichdemon-
strates that incorporating edge features in GGNN can
help to improve the performance of action prediction.
For the 20BN-something-something dataset, the result

gap between “vanilla GGNN” and “Ours” at later obser-
vation is slighter than that at earlier observation, which
also demonstrates that for this dataset, the contribution of
temporal relations becomes more important at the later
observation.

4.4.2 Evaluation on Different Numbers of Fully Connected
Layers of gnode(·) and gedge(·) in LSTGN

Figure 4 shows the prediction accuracies on the CAD120,
20BN-something-something and UCF101 datasets when
using different numbers of fully connected (fc) layers of
gnode(·) and gedge(·) in LSTGN. It is interesting to observe
that:

– For the CAD120 dataset, the results of 2 fc layers are
better than that of 1 fc layer, which indicates that the
deeper network captures more discriminative temporal
relations among different frames.

– For the UCF101 dataset and the 20BN-something-
something dataset, the optimal number of fc laryers is
1 for most observation ratios, probably due to that the
visual objects in these two datasets are represented by
powerful deep features and the shallower network could
be satisfied.

– When the number of fc layers increases more than two,
the prediction accuracies drop quickly for all the obser-
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vation ratios. The probable reason is that too many
parameters caused by many fc layers lead to the over-
fitting problem.

4.4.3 Evaluation on Multi-scale Receptive Fields in
Temporal Relation Reasoning

To demonstrate the effectiveness of multi-scale receptive
fields in temporal relation reasoning, we compare the pre-
diction results of different temporal scales (from 1 to 6)
on the CAD120 and 20BN-something-something datasets in
Table 9. We also compare the prediction results of differ-
ent temporal scales (from 1 to 10) on the UCF101 dataset
in Table 10. Note that the scale 1 means only performing
spatial relation reasoning and directly utilizing single node
representation to classify the action. The scale n represents
the fusion of results from scale 1 to scale n.

From Tables 9 and 10, we can have observe that:

– The performance obviously improves when conduct-
ing temporal relation reasoning with larger scale, which
demonstrates the effectiveness of capturing both the
short-term and long-term evolution of spatial relations.

– For the CAD120 dataset, when the scale is larger than
4, the performance slightly decreases, which is probably
because the feature dimension of extracted temporal rela-
tions is too high to cause the overfitting problem and lead
to a bad impact on the performance of the classifier. For
the 20BN-something-something dataset, when the scale
is larger than 5, the prediction accuracy decreases.

– For the UCF101 dataset, the optimal scale is 8 and is
larger than the optimal scales on CAD120 and 20BN-
something-something. The possible reason is that action
videos in UCF101 are more complex and are composed
of several fine-grained sub-actions, so they need a larger
temporal scale to capture the motions.

4.4.4 Evaluation on the Effectiveness of Different Losses

Toevaluate how the classification loss and the visual semantic
relation loss affect the prediction performance, we conduct
experiments with different values of the trade-off parame-
ter λ (defined in Eq. 16) on the 20BN-something-something
dataset. The results are shown in Table 11 where the larger λ

represents the more effect of the visual semantic loss. It can
be observed that smaller λ often achieve fairly better per-
formance, which suggests the classification loss has much
influence on the prediction results. When λ becomes zero,
the accuracy significantly degrades and it can be concluded
that the classification loss and the visual semantic relation
loss work together to make a positive impact on the predic-
tion performance.

Table 10 Accuracies (%) of different scales on the UCF101 datasets

Scale Observation ratio

0.1 0.3 0.5 0.7 0.9

1 75.75 80.70 85.07 87.13 87.98

2 76.40 84.37 88.34 88.66 88.78

3 75.57 86.08 87.69 89.08 88.17

4 76.76 87.15 88.75 89.04 89.15

5 77.19 88.60 88.97 89.32 89.31

6 76.86 87.32 87.72 88.96 88.20

7 77.27 87.19 88.56 87.94 88.41

8 80.86 88.61 89.31 90.31 89.82

9 77.29 87.47 89.29 89.76 88.65

10 76.57 86.47 88.73 89.19 88.73

Best accuracy among the compared methods are indicated in bold

Table 11 Accuracies (%) of different λ on the 20BN-something-
something dataset

λ Observation ratio

0.1 0.3 0.5 0.7 0.9

0 20.98 21.11 25.06 28.32 30.17

1/8 22.61 25.02 28.28 32.24 34.08

1/6 22.39 22.19 25.70 29.27 31.06

1/4 21.94 23.15 24.94 28.64 30.68

1/2 20.60 20.92 21.94 26.02 27.23

2 21.94 22.00 25.57 28.70 30.74

4 20.60 20.98 23.15 26.21 27.30

6 21.36 21.62 23.21 25.96 26.72

8 20.79 21.05 22.64 25.89 27.49

Best accuracy among the compared methods are indicated in bold

4.4.5 Analysis on the Soft Attention Operator in Spatial
Relation Reasoning

In order to make qualitative analysis on the soft attention
operator in spatial relation reasoning, we visualize the atten-
tion weights of nodes (i.e., the detected objects) in Fig. 5.
For each video frame, the detected objects with their cor-
responding attention weights are shown. It is interesting to
notice that the higher the attention weight is, the object is
considered to be more instructive and vice versa. Taking the
action of “Turning something upside down” for example, the
hand is assigned higher attention weight since the gesture is
more instructive to recognize the action. For the action of
“Pretending to open something without actually open it”, the
pillow is less instructive to the action and its attention weight
is low.
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Fig. 5 Visualization of the attention weights. The colored boxes represent detected objects. The attention weight of each node (i.e., detected objects)
in the spatial graph is shown below the video frames

Fig. 6 Confusion matrix of the 20BN-something-something dataset. The prediction results are averaged over all the observation ratios
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(a)

(b)

Fig. 7 Prediction examples on the 20BN-something-something dataset. The ground-truth label is given on the left side and predicted labels at
different observation ratios are given under the video frames. The labels in blue represent correctly predicted labels and the labels in red represent
wrongly predicted labels

4.5 Analysis on the Performance of Different Actions

To further discuss the prediction ability of our method,
we calculate the accuracy of each action category on the
20BN-Something-Something dataset. As shown in Fig. 6,
our method performs better on the actions of “Showing
something behind something”, “Pushing something from left
to right” and “Pulling something from left to right”. For
the actions that are easily to be confused, e.g., “Putting
something into something” and “Stuffing something into
something”, our model also recognizes them successfully,
owing to the learned spatial–temporal relations that cap-
tures the motion dynamics in videos. For the actions of
“Pulling two ends of something so that it gets stretched” and
“Pulling two ends of something so that it separates into two

pieces”, they are usually misclassified, probably due to that
the manual annotations for the object detector training have
deviations, which makes the input node feature contain inac-
curate spatial information, such as representing two separate
objects as an integral object.

4.6 Analysis on How the Relationship Affects the
Prediction Results

Figure 7 shows some exemplars of prediction results at dif-
ferent observation ratios on the 20BN-something-something
dataset. Figure 7a shows positive examples and it suggests
that our model makes effective use of relations in videos,
such as relative positional relationships and their variations
through time, to make accurate prediction in the early stage
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Fig. 8 Examples of prediction failure statistics on the 20BN-
something-something dataset. For each action category, the histograms
represent the distributions of all the corresponding test videos that are
classified into the six most probable categories at different observation
ratios. These six categories are chosen according to the average classifi-
cation probability of the test videos across all the observation ratios. The

horizontal axis in each histogram indicates the category index and the
corresponding labels of the six categories are provided in the right box
where the green label represents the true category of the test videos and
the blue labels represent false categories. The histogram bar indicates
the percentage of the test videos that are classified into the correspond-
ing category

of the video. We also provide some examples in Fig. 7b to
discuss how our model gradually reasons the action. Taking
the action of “Pretending to open something without actually
opening it” for instance, given the first 10% frames, the rela-
tive positional relation between the hand and the box makes
the action look almost still, which confuses our model to
make the prediction that the action is “holding something”.
With the increasing input video frames, our model captures
the minor changes in the appearance of the box and deduces
the action of “closing something”. After half of the video has
been observed, the evolutions of the global spatial relations
in sequential video frames are captured and the correct action
label is predicted.

To further analyze how the relationship affects the predic-
tion results, we calculate the percentage of prediction failures
falling into each of the three action categories (shown in

Fig. 7b). The changes of failure percentage of test videos
at different observation ratios for the three action categories
(i.e., “Pulling sth from left to right”, “Pulling two ends of
sth so that it separates into two pieces” and “Pretending to
open sth without actually opening it”) are shown in Fig. 8.
Each histogram below the video frame represents the distri-
bution of the test videos that are classified into the six most
probable categories at the current observation ratio. These six
categories are chosen according to the average classification
probability of the test videos across all the observation ratios.
The horizontal axis in each histogram indicates the category
index and the corresponding labels of the six categories are
provided in the right box where the green label represents the
true category of the test videos and the blue labels represent
false categories. The histogram bar indicates the percentage
of the test videos that are classified into the corresponding
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Fig. 9 Percentage of action prediction failures caused by failed object
detection on the 20BN-something-something dataset. The orange his-
togram bar represents the percentage of failed object detection cases
and the blue histogram bar stands for the percentage of action predic-
tion failures that can be attributed to failed object detection

category. Taking the action of “Pulling something from left
to right” as an example, in the early stage at the observa-
tion ratio of 10%, the most probable category is “Picking
something up” (27.4.% of the test videos are classified into
“Picking something up”) since the relative position relation-
ships between the hand and the object are similar in the two
actions of “Pulling something from left to right” and “Picking
something up”. At the observation ratio of 50%, the distance
between the hand and the object becomes closer and there is
no change in the position of the hand and object in vertical
space, thus less test videos are misclassified into “Picking
something up” and more test videos are misclassified into
“Putting something upright on the table” or “Putting some-
thing similar to other things that are already on the table”.
After observing the whole video, most test videos are cor-
rectly classified into “Pulling something from left to right”.

4.7 Analysis on Failures of Our Model

We further analyze the prediction failures of our model. We
choose six difficult action categories that are easily misclas-
sified according to the confusion matrix in Fig. 6 and count
the number of action prediction failures attributed to object
detection failures in all the failed cases of these six action cat-
egories. Then the percentage of prediction failures that can be
attributed to detection failures is calculated. The results are
shown in Fig. 9 where the orange histogram bar represents
the percentage of failed object detection cases and the blue
histogram bar stands for the percentage of action prediction
failures that can be attributed to the failed object detection.
It is interesting to observe that more failed object detection
cases lead to more misclassified actions. Taking the action

of “Pulling two ends of something so that it separates into
two pieces” for instance, there are several irrelated objects
that occupy the majority of the space in the video frame,
which leads to a failed detection of the related objects and
misguides the model. In such videos, more than 60% fail-
ures can be attributed to the failed object detection. For the
action of “Turning something upside down”, the background
is clear and the detector works well, thus there are relatively
less failures can be attributed to the failed detection. Figure 9
also demonstrates that the performance of ourmodel depends
on the effect of the object detector to a certain extent, which
is the main weakness of our method.

5 Conclusion

We have presented a spatial–temporal relation reasoning
approach for action prediction from partial videos. An
improved gated graph neural network has been designed to
capture the spatial relations between visual objects in video
frames. A long short-term graph network has been proposed
to learn the varied dynamics of the spatial relations in mul-
tiple temporal scales. Thus, our method can successfully
make an accurate recognition of the video content with fine-
grained object relations in both spatial and temporal domains
to make prediction decisions. Extensive experiments on five
public action datasets have shown the superior performances
of our method. In the future, we are going to incorporate
prior knowledge of visual object relation into our model to
further boost the spatial–temporal relation reasoning even
when the object detection fails. We will also investigate on
automatically learning the optimal network network struc-
ture for action prediction when handling different datasets.
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